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Abstract

Gastric cancer (GC) is one of the most deadly form of cancer worldwide, partly due to the lack of early diagnosis!-2. Availability of molecular data, characterizing cancer patients and their tumour, is required for
improved diagnosis and prognosis of patients. The commitment of clinicians to provide a precision medicine approach in the diagnosis, prognosis and treatment of GC drives the need for better biological
markers. We describe a retrospective study collecting glycomic, proteomic, immunohistochemistry, Helicobacter pylori, and blood biomarker measurements from tissue and serum samples of 107 gastric cancer
patients that underwent surgery in the Division of Surgical Oncology, at Tertiary University Hospital of Siena, Italy. In this work, we developed a specific framework dedicated to the integration of multiple
datasets from several heterogeneous sources and platforms. Experimental data was integrated with clinical, historical and survival information available for patients providing a large heterogeneous database of
848 variables. This study identified subgroups of patients of clinical importance using a Machine Learning methodology (KEM®, Knowledge Extraction and Management3) that provides, through exhaustive
exploration of all relationships between patient’s variables, an hypothesis-driven approach helping interpret this broad database and thus identify actionable hypotheses. We systematically extracted all logical
associations between experimental measures and clinical outcomes obtaining a knowledge base of over 1000 associations identifying potential disease risk markers.
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